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Abstract—This project aims to investigate single object track-
ing for mobile robot navigation in real-time decision-making
scenarios. A three-wheeled omnidirectional robot equipped with
a deep learning computer vision architecture is used to track
the trajectory of a balloon. The proposed approach involves
developing a custom robot chassis, utilizing an upward-facing
camera to detect and track the velocity of the balloon, and
a time-of-flight sensor to measure the timing of the contact
mechanism. The locomotion control system uses quadrature
encoders for wheel velocity calculations, and a PID algorithm
is developed to match the generated velocity vector. While the
control system failed due to an issue with encoder signal edge
detection, the project provides valuable insights into the design
and development of a custom robot chassis for single object
tracking in mobile robot navigation.

Index Terms—Mobile robot navigation, single object tracking,
real-time decision-making, deep learning, computer vision (CV),
omnidirectional robot kinematics, PID control

I. PROBLEM STATEMENT

The field of mobile robot navigation is gaining increasing
attention as robots become more integrated into our daily lives.
This project seeks to delve into the realm of single object
tracking as it applies to mobile robot navigation, particularly
in the context of responding to a moving object by making
real-time decisions based on its motion. The project domain
encompasses a three-wheeled omnidirectional robot equipped
with a deep learning computer vision architecture that tracks
the trajectory of a balloon and keeps it aloft. This application
assumes operation on a flat surface, only one balloon is
present at a given time, and does not consider occlusions.
The proposed approach involves designing and developing a
custom robot chassis using a combination of 3D-printed and
aluminum components. The upward-facing camera detects and
tracks the velocity of balloon, while a time-of-flight sensor
is used to measure the timing of the contact mechanism.
The locomotion control system incorporates encoders, and an
algorithm is developed to match the generated velocity vector
through PID controlled movements.

II. LITERATURE SURVEY

This literature survey delves into a comprehensive explo-
ration of diverse object detection and tracking applications,

along with a consideration of prospective control systems
for an omnidirectional mobile robot. Through a thorough
analysis of the strengths and limitations of different detection
models, this survey identifies their potential for deployment
in a lightweight and time-sensitive robotics problem involving
trajectory matching in real-time scenarios.

A. Noteworthy Approaches to Object Detection

Computer vision has made significant strides in developing
state-of-the-art object detection and tracking models, which are
becoming increasingly important in the field of robotics. As
robots continue to advance and become more integrated into
society, they require more sophisticated perception systems to
effectively navigate their environment. Object detection and
tracking models, along with other computer vision techniques,
are playing a crucial role in enabling robots to interact with
the world around them in a more intelligent and autonomous
manner. This has led to a surge in research and development
in this area over the past decade.

In the early 2000s, object detection was predominantly
tackled through classical machine learning methods. However,
the landscape of object detection underwent a paradigm shift in
the mid-2010s with the advent of region-based convolutional
neural networks (R-CNN). In particular, the researchers behind
[1] introduced feature extraction on region proposals, leading
to a significant 30% boost in detection accuracy compared to
the existing state-of-the-art models of that time. This marked
a pivotal moment in the evolution of object detection, paving
the way for further improvements and innovations in the field.

Soon after the introduction of R-CNN, Spatial Pyramid
Pooling Networks (SPPN) were proposed by the authors of
[2]. SPPN introduced multiple pooling layers of varying sizes
to enable better training performance and handle varying input
image sizes. SPPN achieved similar performance to R-CNN,
while offering improved computational efficiency by allowing
for shared computation of features across regions.

While the R-CNN and SPPN models were important mile-
stones in the development of computer vision, modern object
detection models have far surpassed their detection capabili-
ties. Today, the most advanced models can be grouped into



three categories: two-stage detectors, which separate object
proposal from classification, and single-stage detectors, which
perform both at once.

1) Two-Stage Detectors: The Faster R-CNN model, pro-
posed by the authors of [3], is a two-stage detector that builds
on the architectures of R-CNN and Fast R-CNN by introducing
a region proposal network. This network extracts features
that aid in detections and allows for real-time performance
in various scenarios. When it was introduced, Faster R-CNN
achieved state-of-the-art performance in object detection.

The authors of [4] proposed R-FCN, a two-stage detector
which showed to have results similar to Faster R-CNN by
proposing position-sensitive score maps to improve image
classification. In their tests, their model was able to achieve
similar but slightly better results to Faster R-FCN combined
with the latest of ResNet, a model that excels at feature
extraction [5].

[6] proposed Mask R-CNN, which adds instance segmen-
tation masks to the existing Faster R-CNN architecture. Mask
R-CNN was achieved state of the art results for instance
segmentation, while two stage detectors such as Faster R-CNN
remained one of the top detection models.

he authors of [7] introduced DETR, a transformer-based
object detection model, in 2020. DETR adopts an encoder-
decoder architecture and uses a CNN backbone to extract
features, followed by a transformer and a feed-forward net-
work for predictions. By leveraging self-attention mechanisms,
DETR is able to achieve comparable results to Faster R-CNN
and outperforms it on large objects. The use of transformers in
object detection has shown promising results and is an active
area of research in the computer vision community.

2) Single-Stage Detectors: In 2016, the Single Shot Multi-
Box Detector (SSD) was introduced in [8]. SSD uses a
feedforward CNN to discretize the output to a set of default
bounding boxes, then performs class probability estimations
for each bounding box. Based on the probability scores, final
bounding boxes are assigned for the predicted class. Each
convolutional layer in the network predicts the bounding boxes
to shape the output. In the original paper, the authors found
that when the number of default bounding boxes was an order
of magnitude larger than competing networks, SSD achieved
a comparable state-of-the-art performance.

RetinaNet is a single-stage object detection model proposed
in 2018 by the authors of [9]. It was designed to address
the class imbalance issue faced by typical two-stage detectors.
RetinaNet uses a Feature Pyramid Network (FPN) to extract
features and generate a set of anchor boxes at each location
of the feature map. The network then predicts the class prob-
abilities and the offset values for the anchor boxes. To handle
the problem of foreground-background class imbalance, the
authors introduced a novel loss function called Focal Loss,
which down-weights the contribution of easy examples and
focuses more on hard examples during training. This is done
by dynamically scaling the cross-entropy loss based on the
confidence of the predicted class probabilities. RetinaNet also
densely samples object locations on the input image, which

is where it gets its name. Upon release, RetinaNet achieved
state-of-the-art performance on the COCO dataset, solidifying
its position as one of the best single-stage detectors.

You Only Look Once (YOLO) has become the gold standard
for single-stage object detection in real-time applications since
its introduction in [10]. YOLO and its subsequent family of
networks use a single convolutional neural network (CNN)
to predict bounding boxes and class probabilities. Due to
its regression network architecture, YOLO can run at very
high frame rates. One of YOLO’s distinctive features is its
tendency to predict fewer positive background bounding boxes
compared to other state-of-the-art detection systems.

In early 2023, Ultralytics released YOLOv8, the latest
in a family of state-of-the-art single-stage object detection
networks. YOLOv8 has shown remarkable efficiency and accu-
racy, surpassing its predecessors in both accuracy and trainable
parameters. Its improved architecture allows it to perform
detections without the need for anchor boxes, resulting in
more accurate generalizations. In [11], the authors compared
YOLOv8 to earlier versions of YOLO using a custom dataset,
and found YOLOv8 to have significantly lower training time
and higher mean average precision than YOLOv7, solidifying
its position as the current state-of-the-art single-stage detector.
YOLOv8’s speed and low complexity make it ideal for real-
time applications such as this project.

B. Control of Omnidirectional Drive Robots

Mobile robotic control is a critical area of research within
the robotics community. To be effective and responsive to
their environment, robots require precise and reliable control
of their kinematics. The following section will review some
of the approaches that researchers have explored to develop
such control for their robotic platforms.

[12] dives deeply into the fascinating world of omnidirec-
tional drive robots, providing valuable insights into various
approaches that designers can adopt in the development of
their hardware and navigation systems. The authors have
painstakingly crafted this paper with the goal of assisting in
the enhancement of various aspects of the design and control
systems of these highly advanced robots.

[13] introduces a novel PID control system tailored for
a four-wheeled omnidirectional robot. Specifically, the con-
trol technique employed in this system is the Quantitative
Feedback Theory, which allows for the design of PID speed
controllers that leverage mean least squares to regulate the
speed of the robot in a closed-loop configuration.

Perhaps more applicable to this current project, [14] presents
an insightful account of the practical application of PID control
algorithms in a three-wheeled omnidirectional drive robot,
wherein each wheel operates with its own unique velocity
vector. It delves deeply into the inner workings of the PID
algorithm, illustrating how it harnesses the power of feedback
from both IMU data and quadrature encoders to enable effi-
cient and accurate control of the robot’s motion.

Similar to [14], the researchers from [15] demonstrated the
successful implementation of using IMU data to correct for



error, designing a gyroscope-based PID feedback controller
to regulate the linear and angular speed of a robot. The
controller is utilized to minimize the discrepancy between the
desired and actual output trajectory, resulting in an optimal
solution. Compared to a directly-driven PID control system,
this approach yields superior performance and accuracy.

[16] investigates the performance of Linear Quadratic
Tracking (LQT) and Proportional-Integral-Derivative (PID)
control systems in the context of omnidirectional mobile
robots and trajectory tracking. The authors demonstrate that
the LQT controller outperforms the PID controller in terms of
tracking a desired trajectory with higher efficiency.

The adaptive backstepping approach optimized with LQR
employed in [17] is a promising control strategy for mo-
bile robots that require fast and precise trajectory tracking.
Although PID control is commonly used for overall system
control, the authors show that closed-loop velocity control
using adaptive backstepping can yield highly effective results.
The approach is designed to achieve precise convergence of
linear and angular velocity errors to zero, making it ideal
for applications that require a more robust control system.
While this approach may not be necessary for the slow-moving
balloons in this project, it could be useful for future iterations
that require faster and more precise reactions.

[18] delves into the topic of trajectory planning for om-
nidirectional mobile robots using linear active disturbance
rejection control. It focuses on the challenges posed by the
uncertainty of system dynamics of such robots when they
move and rotate simultaneously. The author first presents an
analysis of the robot’s kinematics, and then introduces two
closed loop controllers. These controllers rely on feedback
from encoders and tracked trajectory to improve their per-
formance. To address the discrepancies between the observed
trajectory and the odometry-based control systems, the author
employs a linear extended state observer to measure and
compensate for these differences.

In this project, a PID-based controller is chosen for indi-
vidual wheel velocities to match the balloon trajectory. This
approach is similar to the one discussed in [13]. Although
adjusting for drift using IMU data is an intriguing idea, it
is deemed unnecessary because the velocity component of
the balloon captured by the camera should account for the
variance in the robot’s path. While more advanced control
systems discussed in the literature survey are interesting, a
PID controller is the most suitable option for this project, as
it allows the robot to remain computationally efficient.

III. METHODOLOGY

The present paper introduces a robotics project that ad-
dresses a multi-faceted problem, involving several concurrent
tasks that must be completed and integrated into the final de-
sign. These tasks include training an object detection network,
extracting position and velocity components of objects from
detections, hardware design, and developing a control system
to solve the kinematics problem required to intercept an object
along its trajectory.

A. Detecting Balloons with YOLOv8

Known for its high accuracy and efficiency, YOLO (You
Only Look Once) is a popular choice for real-time object
detection applications. The current state-of-the-art in single-
shot object detection models is YOLOv8. Upon its release
in January 2023, YOLOv8 showed to be more accurate and
faster than its predecessor models. This makes it perfect for a
lightweight model to be deployed for single object detection
in real time.

1) Data Collection and Pre-processing: The V2 Balloon
Detection Dataset [19] was used to train the object recognition
model in this project. This dataset comprises 75 images
of balloons, each labeled with corresponding bounding box
annotations. The images contain varying numbers of balloons,
ranging from 1 to 28 per image. The dataset was provided
in a comma-separated-values (csv) file format, with each row
containing information on the image size, bounding box coor-
dinates, number of balloons, and corresponding file name. To
prepare the dataset for use with YOLO, each row of bounding
box information was converted into individual text files in
the YOLO format for each respective image. For training
purposes, the dataset was split into training and validation sets
using an 80%-20% ratio, resulting in 60 training images and
15 validation images. Additionally, a YAML file was created
that included the file paths to the training and validation data,
as well as the class declaration for balloons as the only class.

2) Training and Validation: In this project, the Ultralytics
PyTorch training architecture was utilized with stochastic
gradient descent (SGD) to train the YOLOv8 object detec-
tion model on the balloon detection dataset. The model was
configured with specific hyperparameters, including an image
size of 416 and a batch size of 8. A momentum of 0.85
and a weight decay of 0.0005 were also applied. Prior to
processing by the network, each image was downsized to the
specified image size of 416x416. This image size was chosen
for its ability to achieve high frame rate detections in real-
time deployment while maintaining a lightweight architecture
and retaining high accuracy. The other hyperparameters were
determined through several training cycles, starting from the
most recent model weights, yolov8n.pt, which were previously
trained on the coco dataset. The model was set to train over
250 epochs, with the training cycle ending after 236 epochs
due to early stopping after not improving over 50 epochs. The
hyperparameters mentioned here can be viewed below in a
more structured format in Table I.

TABLE I
YOLOV8 TRAINING HYPERPARAMETERS

Hyperparameter Value
Image Size 416x416
Batch Size 8
Optimizer SGD

Learning Rate 0.01
Momentum 0.85

Weight Decay 0.0005
Patience 50



3) Model Deployment and Velocity Estimation: The
OpenCV AI Kit stereo depth camera (OAK-D) was used
for real-time deployment of the model trained in the prior
section, leveraging the DepthAI library. The OAK-D was
chosen for its precise depth estimations and the ability to host
machine learning pipelines on its embedded Intel Movidius
Myriad X AI chip. However, since PyTorch models are not
directly compatible with DepthAI or the chip, they must
be converted to a compatible format. To address this, the
PyTorch weights file was exported to the OpenVINO model
format and then further converted to the DepthAI blob format,
enabling deployment directly to the camera. This seamless
conversion process ensures the compatibility of the trained
model with the hardware, and enables optimal performance in
real-time deployment scenarios. These factors contribute to the
potential of OAK-D and DepthAI as powerful tools for a range
of applications, including robotics, autonomous vehicles, and
surveillance systems.

A DepthAI pipeline was developed to perform parallel
balloon detections and spatial coordinate estimations. The
pipeline uses the central color camera node for YOLO de-
tections, while the left and right camera nodes function as
a stereo pair for depth estimations. The detected region of
interest is then used to calculate the cartesian coordinates of
the detected balloons in 3D space. Additionally, the pipeline
employs a weighted average method, where the 10 most recent
position updates are considered with a decay rate of 20%, to
compute a velocity vector in the X-Y plane, according to (1)
and (2) below. The vector is weighted to favor the most recent
position updates to attempt to account for the non-linearity of
a balloon’s velocity in real world conditions. This weighted
velocity vector guides the robot to adjust its path accordingly.
It is worth noting that this is the balloon’s relative velocity
compared to the robot. The camera frame moves with the
center of the robot, so any perceived velocity is in addition to
the robot’s velocity at the time. Ideally, the perceived velocity
is close to 0 meters per second, meaning the robot is directly
under the balloon.

vx,weighted =

∑n
i=1 wi · vxi∑n

i=1 wi
, wi = e−α(ti−ti−1) (1)

vy,weighted =

∑n
i=1 wi · vyi∑n

i=1 wi
, wi = e−α(ti−ti−1) (2)

B. Hardware Design

An autonomous mobile robot was developed specifically
for this project, featuring an omnidirectional drive base.
This choice was made due to the unique characteristics of
omnidirectional drives, which afford 3 degrees of mobility,
steerability, and maneuverability. The robot was designed and
constructed over the course of several weeks, with meticulous
attention to detail and precision in all stages of the process.
The chassis was developed through a CAD design process,
which is depicted in Figure 1, and the completed robot is
shown in Figure 2.

Fig. 1. Solidworks view of three-wheeled omnidirectional robot design

1) Chassis: The main chassis, constructed in a hexagonal
shape, was made from eight-inch aluminum din rail. 3D
printed wheel mounts were designed to securely attach to the
chassis, with tight fit bearings supporting a wheel shaft. The
wheel shaft was made from four-inch carriage bolts, chosen
for their snug fit in 608-2RS bearings and ease of installation.

2) Omnidirectional Wheels: Custom-designed four-inch
Swedish-90 wheels were 3D printed for the robot, utilizing
two parts: a side panel and a roller. The side panel was crafted
with seven pins arranged in a circular pattern, facilitating the
support of rollers when mated in opposite directions. Each pair
of panels supports seven rollers, and two assemblies are mated
with a rotational offset to form a full wheel with 14 rollers,
where one always touches the ground. For low-friction rotation

Fig. 2. Three-wheeled omnidirectional robot with spring-loaded balloon
trampoline



around the axle, 608-2RS skateboard bearings fit snugly on
either side of the wheel. Fig. 3 displays a partial 3D model
of the wheel design. To prevent slipping caused by using bare
plastic on a smooth surface, athletic tape was applied to the
outside of the rollers, whereas heat shrink tubing and white
lithium grease were applied to the pins of the wheel, reducing
friction between the roller and the pin. Additionally, each
wheel features a 33-tooth gear fastened to its side, enabling it
to be powered by an 11-tooth gear on the motor shaft. Like
the wheels, the gears were also 3D printed.

Fig. 3. SolidWorks partial view of 3D printed Swedish-90 wheel assembly

3) Balloon Launching Mechanism: The motor mounts on
this robot were not only custom 3D printed parts, but also
a central and versatile feature. Designed with modularity in
mind, the mounts include 1/4 inch screw holes above the
motor and additional holes on each corner, providing multiple
mounting options for various applications. In this project, these
holes were utilized to create a unique spring-loaded balloon
launching mechanism that resembles a trampoline. A wooden
frame, similar in shape to the robot’s chassis, is wrapped
with taut fishing line and supported by springs attached to
each motor mount. A servo is used to compress the springs
using fishing line fed through Bowden tubes. The mechanism
releases the balloon once a time of flight sensor detects that
it is about to reach the surface. A comprehensive view of the
robot assembly, including the trampoline mechanism, can be
seen in Fig. 2.

C. Power Distribution

The robot’s power system utilized a 6500 mAh 2S 7.4V
lithium-polymer battery, which was carefully integrated into
the design. To accommodate the individual components, a cus-
tom protoboard was developed with voltage rails that support
the various power requirements. The board incorporated two
buck switching regulators with 5V outputs, as well as a 5V and
3.3V linear dropout regulator (LDO). With a pack rail, three

5V rails, a 3.3V rail, and a ground rail, the board provided
sufficient power and voltage regulation for the system.

The Jetson Nano, which acted as the central processing unit
for the robot, was powered by a single buck converter, while
the OAK-D camera was powered by the other, providing a 5V
output to the barrel jack. All other 5V components, such as
encoders, motor controller logic supplies, and TTL logic level
shifters, were powered by the 5V LDO. The use of TTL logic
level shifters was required since the logic level of the Jetson
Nano is 3.3V, while the encoders require a higher voltage to
function properly. The low sides of the logic shifters were
powered by the 3.3V rail. Finally, the DC motors that drove
the wheels drew current directly from the pack rail.

D. Control System

The control system is composed of several integrated
components and operates using ROS Melodic on a Jetson
Nano. The ROS network includes five distinct nodes: the
balloon tracker node, the forward kinematics node, the inverse
kinematics node, the update target velocity node, and the
wheel velocity controller node. The architecture supporting
this network was designed with modularity in mind and can
accommodate an N-wheeled omnidirectional robot with rollers
positioned at any specified angle. A node graph graph of the
ROS architecture responsible for the robot’s locomotion is
displayed in Fig. 4 and will be explained in the following
subsections.

Fig. 4. Graphical view of control system ROS architecture

1) Balloon Tracker Node: The DepthAI pipeline on OAK-
D employs a custom YOLOv8 model to detect balloons and
calculate their velocity, as outlined in subsection A. Within the
ROS network, the Balloon Tracker Node publishes the bound-
ing boxes and velocities of the balloon to the balloon bbox
and balloon velocity topics respectively. These topics are then
utilized by other nodes to control the robot’s movement.

2) Forward Kinematics Node: The forward kinematics
node relies on a specialized class to compute the forward
kinematics of an N-wheeled omnidirectional robot. This class
leverages an instantaneous velocity function provided by a



custom quadrature encoder class to derive the robot’s velocity.
The quadrature encoder class calculates the linear velocity of
each wheel based on the number of encoder ticks, gear ratio,
and wheel radius, using Equation 1. The velocities of each
wheel are published to topics corresponding to each wheel.

v = rev/secmotor ∗ 2πr ∗ gear ratio (1)

The forward kinematics class utilizes the velocities previ-
ously computed to determine the current linear and angular
velocities of the robot, employing the forward kinematics
equation shown in Equation 2. When the class is instantiated,
the components of the equation are defined based on charac-
teristics specific to the robot.

ζ̇ = R(θ)−1J−1
1f J2ϕ̇, ζ̇ =

ẋẏ
θ̇

 (2)

The matrix R(θ) provides information on the position and
orientation of the robot in relation to the global frame. In this
specific application, the global frame is always considered to
be the robot’s frame. Therefore, R(θ) is an identity matrix.

To derive J1f , the rolling constraints for a fixed standard
wheel are applied, as given by Equation 3. For a circular base
with wheels evenly spaced around it, α can be calculated for
each wheel (numbered 1 to n) using Equation 4. The angle β
is defined as the angle between the line l from the center of
the robot chassis to the wheel and the wheel’s axis of rotation,
and since they are colinear in this robot, β is 0. Similarly, γ
is defined as the angle between the roller axis and the main
wheel plane, which is 0 for Swedish-90 wheels. L represents
the distance between the center of the robot and each wheel,
which is constant for this application.

Using the values obtained from Equations 3 and 4, the J1f
matrix can be solved with Equation 5.

j1if =
[
sin(αi + βi + γi) −cos(αi + βi + γi) −Lcos(βi + γi)

]
(3)

αi =
π

n
+ 2π

i− 1

n
(4)

J1f =


j11f
j12f
...
j1nf

 (5)

Calculating the J2 matrix is a simple process as it involves
a scaler matrix whose dimension corresponds to the number
of wheels on the robot. This matrix can be obtained by
multiplying an identity matrix of the same dimension by the
wheel radius, which in this case is 2 inches. The vector ϕ̇
corresponds to the wheel velocities. With the help of the
matrices mentioned above, the robot’s linear and rotational
velocities can be determined using Equation 2. Finally, these
computed velocities are published to the robot velocity topic.

3) Update Target Velocity Node: The update target velocity
node utilizes the balloon velocity and robot velocity topics
to calculate a revised velocity target for the robot. More
specifically, it integrates the x and y components of the
balloon’s perceived velocity with the linear components of the
robot’s velocity to attain a net velocity of 0 m/s between the
two entities. The camera frame’s motion in conjunction with
the robot establishes a relative velocity between the balloon
and the robot, which forms the foundation of this approach’s
efficacy.

4) Inverse Kinematics Node: The node for inverse kine-
matics subscribes to the robot’s targeted velocity, which is
generated by the update target velocity node, and calculates the
targeted velocities for each individual wheel. This is achieved
through the resolution of Equation 2, which yields the velocity
vector ϕ̇, thereby resulting in Equation 6. Following this
computation, the velocity for each wheel is disseminated to
its corresponding topic for publication.

ϕ̇ = J−1
2 J1R(θ)ζ̇ (6)

5) Wheel Velocity Controller Node: The velocity con-
troller node for the wheels employs a Proportional-Integral-
Derivative (PID) controller to achieve a match between the
targeted and actual wheel velocities. The PWM signal driving
the motor is updated by utilizing the output of the PID
controller class. The PID control algorithm, as illustrated in
Algorithm 1, is executed for every wheel. It is necessary to
adjust the values of the gains, namely kp, ki, and kd, for each
motor to ensure that external forces are compensated without
producing any oscillations.

Algorithm 1: PID Controller

Require: kp, ki, kd ≥ 0;
Initialize: integral, derivative, errorprevious = 0;
Function update(vtarget, vcurrent)

error ← vtarget − vcurrent;
integral← integral + error;
derivative← error − errorprevious;
output←
kp × error + ki × integral + kd × derivative;
errorprevious ← error;

end

IV. RESULTS

A. Custom YOLOv8 Model

The YOLOv8-based balloon detection model showcased
outstanding performance, achieving a remarkable final
mAP50-95 score of 0.68818, surpassing even the largest
standard YOLOv8 model, YOLOv8x, which scored 0.539.
In contrast, the smaller YOLOv8n model, featuring 21 times
fewer parameters, performed significantly worse, attaining a
score of only 0.373 [20]. Additionally, the standard YOLOv8
distributions are trained on an image size of 640 compared



to this model’s 416 [20]. The improved performance of the
balloon detection model is attributed to its training on a single
class, unlike the COCO dataset’s 80 classes. This training
approach is likely to have led to superior feature extraction
and higher detection accuracy. However, given the small size
of the dataset (75 images), overfitting may be a concern.
Nevertheless, in real-world deployment, unoccluded balloons
were consistently detected from the OAK-D camera’s video
feed without fail, indicating that overfitting did not appear to
be a problem.

As depicted in the confusion matrix illustrated in Fig. 5,
the model exhibits remarkable proficiency in identifying un-
obscured balloons, albeit occasionally struggling with misiden-
tifying background noise as non-existent balloons. The issue
was particularly evident during the deployment phase, where
the model erroneously classified overhead lights as balloons,
thereby impeding the efficacy of the tracking algorithm. A
plausible solution to mitigate this would involve filtering
out imprecise bounding boxes based on their position and
recent velocity vector and minimizing system noise. Another
approach could be to employ extended Kalman filtering to
assess the accuracy of the detected location.

Fig. 5. Confusion Matrix for YOLOv8 model

The precision-recall curve, as depicted in Fig. 6, underscores
the remarkable trade-off achieved by the model between
precision and recall. At a threshold of 0.5, the curve yields
an impressive mAP score of 0.821, a vital attribute for any
object detection model. This achievement is a key contributor
to the model’s high true positive rate and low false positive
rate, as shown in the confusion matrix in Fig. 5.

The F1 curve depicted in Fig. 7 exhibits an impressive
equilibrium between the precision and recall of the model, at a
confidence threshold of 0.511. While this threshold underwent
testing, a higher value of 0.85 was discovered to be effective
in eliminating most background classifications, without com-
promising the precision of balloon detection. Consequently, a
confidence threshold of 0.85 was deployed to the robot.

Fig. 6. Precision-Recall curve for YOLOv8 model

Fig. 7. F1 curve for YOLOv8 model

When deployed to OAK-D on a Jetson Nano, the model
was able to detect and calculate the velocity of balloons at
approximately 9 frames per second while also displaying the
images. The actual processing speed is expected to be faster
when the images are not being displayed.

B. Omnidirectional Drive Base

During the deployment phase, the robot encountered a chal-
lenge with detecting the pin state transitions of the encoders.
This resulted in the robot’s inability to measure the wheel
velocities, and the velocity controller did not function as
expected. In addition, the proportional, integral, and derivative
constants were not tuned due to the incorrect error values
caused by the absence of velocity data. Although the cause
of this issue requires further investigation, it is worth noting
that the robot successfully demonstrated its ability to rotate
the wheels in the direction required to achieve a target velocity
defined by the balloon.

In terms of hardware, the application of athletic tape around
the rollers of the wheels provided sufficient friction between
the wheels and the driving surface, thereby eliminating any
slippage. This irradicated issues that may arise from bare



PLA not being conducive to the angling of wheels towards
each other. Although fabricated through additive manufactur-
ing techniques, the gear train from the motor to the wheel
exhibited minimal backlash, resulting in a reduction of any
potential systematic errors.

The efficacy of the trampoline mechanism in bouncing
the balloon was found to be variable owing to the intrinsic
unpredictability of the balloon’s motion and orientation upon
contact. Nevertheless, given that the primary objective of this
project pertained to real-time trajectory matching, this issue
was deemed a secondary concern and relegated to a lower
priority as long as other aspects of the project were executed
flawlessly.

C. Alternative Method
The proposed method for trajectory matching with a mobile

robot presented in [21], utilizes adaptive color matching and
Kalman filtering. The method employs tracking of the region
containing the moving object by predicting the motion of pix-
els with the same color, and it adjusts for the effects of lighting
variations. While Kalman filtering was considered for tracking
in this project, it was initially deemed too computationally
expensive to implement on less powerful hardware than the
eventual Jetson Nano.

It is worth noting that the approach presented in this project
differs from that of [21] in that the latter requires the object
to be a uniform color, specifically an orange ball. In contrast,
the YOLO model trained in this project was trained on images
from a diverse range of colors, shapes, and lighting conditions,
rendering this implementation more robust.

V. CONCLUSION

This project presented a novel mobile robot designed to
accurately match the trajectory of a free-floating balloon. By
utilizing a YOLOv8 object detection model, the robot was able
to detect the balloon’s position and velocity relative to itself
in real-time, resulting in a trajectory vector for the robot to
match. Despite facing challenges with encoder readings during
deployment, the robot demonstrated its ability to effectively
move the wheels in the correct direction based on the target
velocity defined by the balloon.

The hardware design and construction of the robot resulted
in a robust and structurally sound platform with a high degree
of mobility, steerability, and maneuverability. This design has
the potential to be repurposed for a wide array of applications,
such as SLAM or path planning.

Future work on this project will focus on resolving the
encoder reading issue, replacing the power distribution proto-
board with a printed circuit board, and expanding the robot’s
capabilities by implementing new features such as those men-
tioned above.

All CAD and code for this robot has been made publicly
available on GitHub [22], providing an opportunity for further
development and research in the field of trajectory matching
robotics. Overall, this project has demonstrated the feasibility
and potential of using mobile robots for trajectory matching
applications.
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