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Abstract—In this investigation of trajectory prediction, a piv-
otal component of robotic perception, we concentrate on the
realm of air hockey robots. Employing YOLOv8, a cutting-edge
single-shot object detection technique, we enhance the detection
of the puck’s position on an air hockey table. Our approach
includes a three-degree-of-freedom planar robot equipped with
a flat end effector. Results showcase YOLOv8’s outstanding
performance in object detection on a tailored dataset and in
real-time gameplay scenarios. Despite initial concerns about
overfitting, we employ an LSTM model to adeptly capture the
non-linearities inherent in games like air hockey, which elude
purely velocity-based physics approaches. Real-time metrics un-
derscore the efficiency of YOLOv8 when applied to robotics
applications. This research offers valuable insights into the
strengths and weaknesses of various trajectory prediction models
when integrated into practical robotics applications.

Index Terms—Computer Vision in Robotics, Machine Learning
for Robotics, Object Detection, Trajectory Prediction, Air Hockey
Robot, Robot Perception

I. MOTIVATION FOR PROJECT

The field of trajectory prediction, a pivotal research area in
machine vision and machine learning, plays an indispensable
role in object tracking and collision avoidance. Its applications
span a wide range of areas, including but not limited to, pre-
dicting the trajectories of aircrafts, missiles, vehicles, and hu-
mans [1]–[4]. The ability to anticipate future positions through
prediction is crucial for ensuring seamless and safe path
planning, particularly for autonomous agents such as robots
or self-driving cars operating within a dynamic environment
[5]. Trajectories are commonly modeled as inertial objects
influenced by external forces. This paper aims to conduct a
comparative study of various endpoint prediction algorithms
with respect to the trajectory prediction of a physical object
subjected to observable external forces.

II. LITERATURE REVIEW

A. Air Hockey Robots

Air hockey has served as a foundational domain for tra-
jectory prediction research since the late 1990s. In a seminal
work, Bishop and Spong employed rudimentary machine vi-
sion techniques to predict the endpoint of an air hockey puck.
By subtracting sequential frames, they isolated the moving
black puck against the white surface. The puck’s velocity
was inferred from frame-to-frame comparisons. The system

continuously updated the current trajectory, accounting for im-
pact locations with walls and minimizing errors. Performance
metrics, akin to those used in control systems, included settling
time and peak error. Notably, nonlinearities emerged due to
bounce characteristics and inconsistent friction from the table
surface. Their experimental setup featured a three-link belt-
driven robot equipped with a traditional air hockey mallet as
an end effector [6].

Namiki, Matsushita, et al. proposed a comprehensive air
hockey robot system that integrates short-term and long-term
strategies. Leveraging opponent motion and puck position,
they employed a high-speed 500 fps camera for tracking. The
puck’s uniform linear motion was modeled using conventional
physics. Short-term tactics involved approaching the impact
point, utilizing a 3rd-order differential equation with a 2-
link robot. Strategies were categorized into attack, defense, or
disregard. Long-term planning included learning opponents’
playing styles to inform short-term decisions [7].

In a 2020 study, researchers introduced advanced techniques
for an air hockey robot system [8]. Transitioning from frame-
by-frame comparisons, they incorporated the tiny YOLOv-3
model, facilitating inferences at an impressive rate of up to 30
frames per second. YOLO, an acronym for ”You Only Look
Once”, is a single-shot multi-box detector renowned for its
capacity to perform high-speed detections. This model was
employed to detect both the hockey puck and the position
of the opponent’s mallet. The training phase involved 250
labeled images of the puck in slow motion, and an additional
250 images featuring the puck moving at speeds sufficient to
induce motion blur.

Their trajectory prediction was compared to traditional
kinematics. The trajectory before collision is given by:

Xt = Cx +
Yt − Cy

Cy−Py

Cx−Px

(1)

The reflection law is expressed as:

Yt+1 = −Cy − Py

Cx − Px
(Xt+1 −Xt) + Yt (2)

Here, Xt and Yt represent the final position before hitting
the edge of the table, while Cx and Cy denote the center point



of the puck at the current time. Px and Py correspond to the
center at the previous moment.

Additionally, after hitting the edge of the table, the point in
the defensive area is represented by Xa and Ya. To account
for the hockey puck radius, we have:

Xa = Yb − sin(tan−1(m)) (3)

Ya =

{
Ymin + cos(tan−1(m)), if Yb < Ymin

Ymax − cos(tan−1(m)), if Yb > Ymax

(4)

Where Xa and Ya represent the impact points after correc-
tion, Xb and Yb are the impact points before correction, and
Ymin and Ymax define the upper and lower boundaries. The
slope of the current direction of travel is denoted by ’m’.

Fig. 1. Schematic diagram of linear formula combined with the law of
reflection [8].

In the realm of endpoint prediction, the operational space
is partitioned into nine equidistant locations. The task of the
neural network is to ascertain the optimal location, among
these nine, to which the mallet should be directed. Eight
distinct neural network architectures, each characterized by
a unique excitation function, were employed with varying
degrees of success. The most accurate prediction achieved a
commendable accuracy score of 0.80. The robot utilized in
these experiments was a one-dimensional entity, propelled by
a stepper motor [8].

B. Trajectory Estimation

Highway vehicle prediction using Long Short-Term Mem-
ory networks (LSTMs) has been investigated by [9]. End-
point prediction for highway vehicle tracking is critical for
functional autonomous vehicles. These systems must operate
at high speeds while maintaining reliability. Missing trajec-
tory predictions can lead to collisions, and abrupt braking
uncertainty poses risks to users. The agent leverages local
lateral positions and velocities of nearby vehicles. The LSTM
model produces a vector of positions k seconds into the
future, successfully predicting vehicle lateral positions within
a remarkable 70 centimeters at 10 seconds ahead [9].

LSTMs, a subset of recurrent neural networks (RNNs),
address the limitations of traditional RNNs. While RNNs
maintain information across passes, they suffer from vanishing

gradients, hindering their ability to remember long sequences.
When memory units are added to RNNs, they encounter
exploding gradients due to excessive information storage.
LSTMs overcome these challenges through forget gates, al-
lowing them to retain relevant information while maintaining
model accuracy [10].

C. Advancements in Object Detection: The YOLO Paradigm

The realm of object detection has been revolutionized by
the advent of YOLO (You Only Look Once), a single-shot
regression-based model, first introduced in the seminal 2016
paper, “You Only Look Once: Unified, Real-Time Object De-
tection” [11]. Distinct from the traditional sliding window and
template matching methodologies, YOLO employs a single
pass through a convolutional neural network for image pro-
cessing, thereby formulating bounding box estimations within
the full image context. This innovative approach significantly
mitigates the incidence of false background detections [11].

The YOLO model has undergone more than 20 iterations
since its inception, with the most recent versions being
YOLOv8 and YOLO-NAS (You Only Look Once - Neural
Architecture Search). YOLOv8 represents a significant ad-
vancement over its predecessors by incorporating an anchor-
free architecture with a decoupled head, thereby enabling
the independent processing of objectness, classification, and
regression tasks [12].

YOLO-NAS (Neural Architecture Search) further refines
this model by integrating quantization-aware modules that pre-
parameterize the model for 8-bit quantization, thereby mini-
mizing accuracy loss during this process [12], [13]. Moreover,
the inclusion of RepVGG blocks enhances the model’s com-
patibility with post-training quantization tasks. These strategic
enhancements not only boost performance on small objects
but also augment localization accuracy, rendering the model
particularly suitable for real-time deployment on edge devices
[14].

III. METHODOLOGY

A. Robot

This project introduces a planar robot, equipped with a
flat-end effector and offering 3 degrees of freedom (DoF),
as depicted in Fig. 2. The robot’s design with 270 degree
servos at each joint enables comprehensive coverage of an air
hockey table’s entire hitting zone. Furthermore, it can adjust
the orientation of its end effector to redirect the puck toward
the adversary’s goal effectively.

In this study, we employ a unique kinematic library designed
for dynamic adaptation to various robot configurations. This
library facilitates the definition of the robot’s frames, based
on its Denavit-Hartenberg (DH) parameters, and calculates
both forward and inverse kinematics of the robot based on
its configuration.

Given that the 3 DoF planar robot possesses a readily
derivable algebraic inverse kinematic solution, the default
iterative method, relying on the Jacobian pseudo-inverse, is
replaced by specific inverse kinematic equations tailored to



Fig. 2. 3 DoF Robot Arm

the robot’s configuration. These inverse kinematic equations,
represented from Eq.1 to Eq.5, use (x, y) to indicate the target
position and θtarget to denote the target orientation of the end
effector.

Eq.5 and Eq.6 compute the x and y coordinates of the
second joint, addressing a 2 DoF kinematic problem, using
the target pose and the length of joint 3. Subsequently, Eq.7
and Eq.8 solve for the angles of joints 1 and 2. Finally, Eq. 9
utilizes these angles to calculate the angle of joint 3. This
method effectively demonstrates the versatility and practicality
of the library.

p2x = x− l3 · cos(θtarget) (5)

p2y = y − l3 · sin(θtarget) (6)

θ2 = cos−1

(
p22x + p22y − l21 − l22

2 · l1 · l2

)
(7)

θ1 = atan2(p2y, p2x)− atan2 (l2 · sin(θ2), l1 + l2 · cos(θ2))
(8)

θ3 = θtarget − θ1 − θ2 (9)

B. Dataset

An original training dataset was curated through the capture
of a 90-minute air hockey session, with still images docu-
mented using an OAK-D camera positioned 6 feet above the
table surface (see Fig. 3). A comprehensive set of 26,627
images was amassed, and within this dataset, 443 images
underwent meticulous hand-labeling with RoboFlow. The table
was annotated based on the coordinates of its top left and lower
right corners, as illustrated in Fig. 4. Subsequently, these 443
labeled images were utilized to train a YOLOv8 model, which
effectively extended its labeling proficiency to the remaining
images.

The YOLO model provided bounding boxes for both the
table and the puck. To normalize the center position of the
puck, Equations 10 and 11 were employed:

xc =
xpr−xpl

2 − xtl

xtr − xtl
(10)

yc =
ypr−ypl

2 − ytl

xtr − ytl
(11)

Here, xpr denotes the x-coordinate of the puck’s right corner
in the bounding box, and xtl signifies the upper left corner of
the table. Images where the puck was off the table or stationary
were excluded, resulting in a refined dataset of 15,763 images.
Each image was temporally labeled based on its intersection
with the black lines on either the right or left.

To augment the dataset, the table’s orientation was mirrored
along the vertical axis, doubling the available data to 31,525
samples. Given a slight backward tilt of the table, the dataset
was not mirrored along the horizontal axis to preserve this
characteristic. This meticulous data curation process laid the
foundation for robust model training and evaluation.

Fig. 3. Test Setup

C. Model

The assessment of YOLOv8 and YOLO-NAS models un-
folded through rigorous testing on a subset of 443 meticulously
annotated images, forming the foundational dataset. Within
this carefully curated collection, around 100 images showcased



Fig. 4. Training Image

motion blur, while an additional 64 presented challenges
in predicting the puck’s position on the table during initial
validation. These challenges were particularly pronounced on
the table’s sides, where the puck was partially obscured by
the lip, and over the central tiger region, characterized by its
color resemblance to the red puck.

The YOLOv8 model demonstrated far superior performance
compared to the YOLO-NAS model, leading to its selection
for annotating the remaining training data. The estimation of
puck velocity and trajectory involved leveraging essential data
points, including the central and edge coordinates of the puck,
normalized table coordinates, and the associated timestamps
for each image.

An LSTM model was crafted to predict the puck’s forth-
coming crossing point into the robot’s hit zone. The model,
featuring 80 LSTM units across two layers, utilized the puck’s
central coordinates and was labeled based on the anticipated
crossing position aligned with the left black line. The model
processed sequential data with a length of 10, where the
final value corresponded to a point within 20 frames of the
puck crossing the goal. The model underwent 400 epochs of
training.

This LSTM model was then compared against a physics
model outlined in Algorithm 1.

IV. RESULTS

A. Puck and Table Detection

1) YOLO-NAS: In the deliberative process leading to the
selection of YOLOv8 as our model of choice, an initial exper-
imentation involved the training and testing of a YOLO-NAS
model on the foundational dataset, resulting in suboptimal
performance after training for 1000 epochs. As evident in
Fig. 5, the model exhibited a tendency to inaccurately predict
bounding boxes, extending beyond the key points of the table.

Algorithm 1: Physics Model
Data: x, xp, y, yp
Result: Y c,Θ
dx← x− xp;
dy ← y − yp;
if dx ≈ 0 then

Y c← 0.5;
Θ← 0;

else if dx > 0.0001 then
Xc← dx · (1−y)

dy + x;
if Xc > 0 then

x← Xc;
y ← 1;
dy ← −dy;

else if dx < −0.0001 then
Xc← dx · (0−y)

dy + x;
if Xc > 0 then

x← Xc;
y ← 0;
dy ← −dy;

Y c← dy ·
(
− x

dx + y
)
;

Θ← arctan
(

dy
dx

)
;

Notably, it struggled to accurately identify the puck’s position
on the table, and false detections of the table itself were
observed. This discernible behavior aligns with the trends
illustrated in the associated confusion matrix, portrayed in
Fig. 6.

Fig. 5. Validation Prediction by YOLO-NAS Model

2) YOLOv8: A YOLOv8n model, leveraging the foun-
dational dataset and training for 97 epochs before freezing
its weights due to early stopping, achieves commendable
proficiency in object detection. The precision-recall curve
illustrated in Fig. 7 distinctly reveals the model’s ability to
maintain a notable equilibrium between precision and recall,
culminating in a remarkable mean Average Precision (mAP)
score of 0.995 at a confidence threshold of 0.5. Furthermore,
the F1 confidence curve, as depicted in Fig.8, underscores the
model’s capability to accurately predict bounding boxes at an
exceptionally high rate, even with a low confidence threshold.



Fig. 6. Confusion Matrix for YOLO-NAS Model

Fig. 7. Confusion Matrix for YOLOv8n Model

Fig. 8. F1 Confidence Curve for YOLOv8n Model

This observation is reinforced by the impeccably depicted
confusion matrix in Fig. 9, further affirming the model’s
exemplary performance on both the validation and testing
datasets.

Fig. 9. Confusion Matrix for YOLOv8n Model

The model’s precision is notably highlighted in Fig. 10,
where predictions made during the training process on a vali-
dation batch showcase impeccable accuracy, thereby serving as
a compelling testament to the model’s exceptional capabilities
with an absolute absence of errors. Leveraging the reliability
of this highly accurate model, it was employed as a robust
data labeling tool, proficiently assigning bounding boxes for
key points on the puck and table within the comprehensive
dataset comprising 26,627 images.

Fig. 10. YOLOv8n Validation Batch Predictions



B. Prediction Models
The LSTM underwent an extensive training regimen span-

ning 400 epochs. Despite the incorporation of regularization
and weight decay measures, a discernible divergence emerged
between the model’s training loss, which continued to de-
crease, and the validation loss, which exhibited an upward
trend—clear indicators of overfitting. In response to this, the
number of epochs was judiciously reduced to 200 to optimize
performance.

The test dataset comprised 2664 sequences, each with a
length of 10, encompassing a total of 134 recorded crossings.
Evaluation of the predictive performance revealed that the
physics model, when applied to sequence data, exhibited a
mean squared error (MSE) of 0.1601 for forecasting future
crossings, whereas the LSTM achieved a lower MSE of
0.0573. This signifies the LSTM’s adeptness in capturing some
of the nonlinearities inherent in the table dynamics.

Furthermore, the models were evaluated based on their
ability to accurately intercept the puck, defined as predicting
the final crossing within a margin of 4.1 inches. In testing
data, the physics model successfully intercepted 127 out of
134 shots, while the LSTM achieved a slightly lower success
rate, intercepting 109 out of 135 shots. These nuanced results
underscore the model-specific nuances in their performance,
shedding light on their respective strengths and areas for
refinement.

Fig. 11. Validation Curve

C. Real-Time Performance
1) Inference Rate: The OAK-D camera, operating seam-

lessly at a rate of 60 frames per second (FPS), posed no
hindrance to the computational prowess of the system. Lever-
aging the formidable hardware of an Acer Predator Triton 500
laptop, featuring a 12th-Gen Intel Core i9-12900H processor
and an NVIDIA GeForce RTX 3080 Ti Laptop GPU, our inte-
grated system demonstrated exceptional performance. Through
the integration of a YOLOv8 model for precise bounding box
predictions and a combination of physics-based and LSTM-
based approaches for hit zone crossing estimates, our system

Fig. 12. Normalized Physics Model Location Estimates

Fig. 13. Normalized LSTM Location Estimates

achieved commendable results. Specifically, we attained a
frame rate of 33 FPS while rendering images annotated with
bounding boxes. Notably, the system exhibited an even more
impressive performance of 57 FPS when not rendering images.
This affirms that the primary constraint on the inference rate is
indeed dictated by the frame rate of the camera, underscoring
the robustness of our integrated approach.

2) Robotic Implementation: A comprehensive lookup table
of kinematic solutions, strategically crafted to encompass
the robot’s hitting zone, was meticulously generated. This
approach not only places a paramount emphasis on ensuring
the safety of the robot but also serves the dual purpose of
mitigating real-time computation demands. By employing a
lookup table, the robot adeptly intercepts the puck at its nearest
predefined valid kinematic solution without the necessity of
dynamically computing the requisite joint angles in real-time.
This not only enhances efficiency but also acts as a safeguard,
preventing the selection of joint angles that could inadvertently
result in collisions with the table’s side wall, potentially
jeopardizing the integrity of 3D printed joints.



Fig. 14. Normalized LSTM Location Estimates

The robot’s three servos were controlled using an SSC-
32U PWM servo driver board, enabling precise puck tracking,
interception point prediction, joint angle calculation for the
interception pose, and direct servo control via serial communi-
cation. Fig. 15 visually demonstrates the system’s effectiveness
in detecting and intercepting the puck, with occasional false
detections during testing addressed by concealing the red joints
with blue tape.

While the physics model demonstrated proficiency in de-
termining interception positions, consistent with findings in
existing literature, the LSTM-based prediction model showed
promise in guiding the robot along the puck’s trajectory.
However, challenges such as vibrational loosening of 3D-
printed joints during gameplay limited our ability to fully
observe its performance. Recognizing these challenges, future
iterations of this project will involve a redesign of the robot’s
joints to address issues related to wear and tear on the current
3D printed parts, particularly their narrow and closely spaced
screw holes. This strategic adjustment aims to enhance the
adaptability and efficacy of our robotic system in the dynamic
context of air hockey gameplay.

V. CONCLUSIONS

This study delves into the critical realm of robotic per-
ception, specifically focusing on the indispensable domain
of trajectory prediction. This aspect is foundational in both
machine vision and machine learning, finding diverse appli-
cations across fields like aircraft, missile guidance, vehicles,
and autonomous robotic agents. The ability to accurately
predict the future positions of observable objects is paramount
for the seamless operation of robotic systems, particularly
in stochastic and dynamic environments. In this study, we

Fig. 15. Robot Hitting Moving Puck

specifically address the challenges of trajectory prediction for
a moving object subject to observable external forces, con-
ducting a comparative analysis of various endpoint prediction
algorithms.

Our exploration of trajectory prediction in the context of
air hockey robots involves tracing the evolution of existing
research in this domain. From rudimentary machine vision
techniques, as applied in prior works, to more advanced
approaches exploring memory-based physics estimation, our
design builds upon and extends previous methodologies. No-
tably, we leverage modern state-of-the-art computer vision
techniques, such as YOLOv8 for object detection, and machine
learning-based trajectory estimation, departing from purely
velocity-based predictions.

Furthermore, our methodology introduces a planar robot
with three degrees of freedom, featuring a flat-end effector.
This departure from previous approaches, which primarily
focused on defending their own goals, sets our implementation
apart as it is designed not only to defend but also to actively
attempt scoring.

The results of our study highlight a clear distinction in the
performance of YOLOv8 and YOLO-NAS when trained for
a limited number of epochs. YOLOv8 showcases exceptional
proficiency in object detection on our custom dataset. Despite
initial indications of overfitting, the LSTM model proves its
adeptness in capturing nonlinearities in table dynamics, as
evidenced by a lower mean squared error compared to a



physics-based model.
Real-time performance metrics underscore the efficiency of

our perception algorithm, achieving high frame rates for de-
tection and tracking, enabling a robust robotic implementation.
Leveraging a lookup table for inverse kinematic solutions, our
robot effectively intercepts the puck as it enters the hit zone,
showcasing the effectiveness of our approach in the dynamic
context of an air hockey game.

In summary, our study contributes to the evolving landscape
of robotic perception and trajectory prediction, providing in-
sights into the strengths and weaknesses of various models.
Moreover, our findings demonstrate the practical integration of
these models with both homemade and manufactured robots
in real-world applications.
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